Absolute stability of a stochastic integro-differential system

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic stability of neutral stochastic functional integro-differential equations*

This paper is concerned with the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic delay neutral partial functional integro-differential equations. We suppose that the linear part possesses a resolvent operator in the sense given in [8], and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is used to achie...

متن کامل

Integro - Differential Stochastic Resonance

A new class of stochastic resonator (SRT) and Stochastic Resonance (SR) phenomena are described. The new SRT consist of a classical SRT, one or more time derivative circuits and the same number of time integrators. The incoming signal with additive noise is first time derivated, then passes through the classical SRT and finally it is time integrated. The resulting SR phenomena show a well defin...

متن کامل

Stability of a system of Volterra integro-differential equations

Using new and known forms of Lyapunov functionals, this paper proposes new stability criteria for a system of Volterra integro-differential equations.  2003 Elsevier Science (USA). All rights reserved.

متن کامل

Stochastic Volterra integro-differential equations: stability and numerical methods

We consider the reliability of some numerical methods in preserving the stability properties of the linear stochastic functional differential equation ẋ(t) = αx(t) + β ∫ t 0 x(s)ds+ σx(t− τ )Ẇ (t), where α, β, σ, τ ≥ 0 are real constants, and W (t) is a standard Wiener process. We adopt the shorthand notation of ẋ(t) to represent the differential dx(t) etc. Our choice of test equation is a stoc...

متن کامل

Global Stability for a Nonlinear Volterra Integro–Differential System

Sufficient conditions are given which guarantee that the trivial solution x = 0 for a nonlinear integro–differential system is globally attracting. As an example, this result is applied to a SIRS epidemic model with subpopulations to show that, under certain conditions, the endemic equilibrium is globally asymptotically stable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1976

ISSN: 0022-247X

DOI: 10.1016/0022-247x(76)90185-2